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Abstract

In this paper we develop a local discontinuous Galerkin method to solve the generalized nonlinear Schrodinger
equation and the coupled nonlinear Schrédinger equation. L? stability of the schemes are obtained for both of these
nonlinear equations. Numerical examples are shown to demonstrate the accuracy and capability of these methods.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we develop a local discontinuous Galerkin method to solve the generalized nonlinear
Schrédinger (NLS) equation

ity + st + (g ([ )u),, + /(| )u = 0, (1.1)
the two-dimensional version
i, + Au+ f(|u])u =0, (1.2)

and the coupled nonlinear Schrédinger equation
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{iu,+iocux+uxx+[3u+lcv + £ (ul?, |v)u =0, (1.3)
iv, — iowy + v — Pu+ xv + g(|ul’, [o])o =0,
where f(u) and g(u) are arbitrary (smooth) nonlinear real functions and «, 5,k are real constants.
The cubic nonlinear Schrédinger equation
1, + e + |u|2u =0, (1.4)

which is a special case of Eq. (1.1), describes many phenomena and has important applications in fluid
dynamics, nonlinear optics, and plasma physics [3,4,15]. Its structure is reminiscent of the Schrodinger
equation in quantum physics, where |u|* has the significance of a potential. In Eq. (1.4) the complex func-
tion u(x, t) describes the evolution of slowly varying wave trains in a stable dispersive physical system with
no dissipation, for example waves in deep water. Various kinds of numerical methods can be found for sim-
ulating solutions of the NLS problems [5,17,20,21,24,25,29]. In [5,29], several important finite difference
schemes are tested, analyzed and compared. In [24], a pseudospectral solution of GNLS equation is
considered. A numerical solution of the NLS equation is obtained by using the quadratic B-spline finite
element method in [17]. The convergence of a class of space-time finite element method for the nonlinear
(cubic) Schrodinger equation is analyzed in [20,21]. The discontinuous Galerkin method considered in [20]
refers to a discontinuous Galerkin discretization in time, hence is different from our approach of using a
local discontinuous Galerkin discretization for the spatial variables.

The two-dimensional nonlinear Schrédinger equation (1.2) is a generic model for the slowly varying
envelop of a wave-train in conservative, dispersive, mildly nonlinear wave phenomena. It is also obtained
as the subsonic limit of the Zakharov model for Langmuir waves in plasma physics [34]. It is possible
for solutions of the two-dimensional nonlinear Schrédinger equation to develop singularities at some
finite time 7, [18]. The linearized Crank—Nicolson finite difference scheme was used to compute the two-
dimensional NLS equation in [27].

The coupled nonlinear Schrédinger equation

{iu;—I—iocux-Féuxx'F(|“|2+ﬁv|z)”:0’ (1 5)

iv, — fowy + 1o + (Blul* + |v]*)v = 0,

were first derived 30 years ago by Benney and Newell [2] for two interacting nonlinear packets in a disper-
sive and conservative system. The classification of the solitary waves is considered in [33]. Ismail and Taha
[19] introduced a finite difference method for the numerical simulation of the coupled nonlinear Schrédinger
equation. In [28], a multi-symplectic formulation is considered.

The discontinuous Galerkin (DG) method we discuss in this paper is a class of finite element methods
using a completely discontinuous piecewise polynomial space for the numerical solution and the test func-
tions in the spatial variables, coupled with explicit and nonlinearly stable high order Runge-Kutta time dis-
cretization [26]. It was first developed for hyperbolic conservation laws containing first derivatives by
Cockburn et al. [11,10,8,12] in a series of papers. For a detailed description of the method as well as its
implementation and applications, we refer the readers to the lecture notes [7], the survey paper [9], other
papers in that Springer volume, and the review paper [14].

These discontinuous Galerkin methods were generalized to solve a convection diffusion equation (con-
taining second derivatives) by Cockburn and Shu [13]. Their work was motivated by the successful numer-
ical experiments of Bassi and Rebay [1] for the compressible Navier—Stokes equations. Later, Yan and Shu
[31] developed a local discontinuous Galerkin method for a general KdJV type equation containing third
derivatives, and they generalized the local discontinuous Galerkin method to PDEs with fourth and fifth
spatial derivatives in [32]. Levy, Shu and Yan [22] developed local discontinuous Galerkin methods for
solving nonlinear dispersive equations that have compactly supported traveling wave solutions, the
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so-called “compactons”. Recently, Xu and Shu [30] further developed the local discontinuous Galerkin
method to solve three classes of nonlinear wave equations formulated by the general KdJV-Burgers type
equations, the general fifth-order KdV type equations and the fully nonlinear K(n,n,n) equations.

These discontinuous Galerkin methods have several attractive properties. It can be easily designed for
any order of accuracy. In fact, the order of accuracy can be locally determined in each cell, thus allowing
for efficient p adaptivity. It can be used on arbitrary triangulations, even those with hanging nodes, thus
allowing for efficient & adaptivity. The methods have excellent parallel efficiency. It is extremely local in
data communications. The evolution of the solution in each cell needs to communicate only with the imme-
diate neighbors, regardless of the order of accuracy. Finally, it has excellent provable nonlinear stability.
One can prove a strong L? stability and a cell entropy inequality for the square entropy, for the general
nonlinear cases, for any orders of accuracy on arbitrary triangulations in any space dimension, without
the need for nonlinear limiters.

The paper is organized as follows. In Section 2, we present and analyze the local discontinuous Galerkin
methods for the NLS equations. In Section 2.1, we present the methods for the generalized NLS equations.
We prove a theoretical result of L? stability for the nonlinear case as well as an error estimate for the linear
case. In Section 2.2, we present the local discontinuous Galerkin methods for the two-dimensional NLS
equations and give a theoretical result of L? stability. In Section 2.3, we present a local discontinuous Galer-
kin method for the coupled NLS equations and give a theoretical result of L? stability. Section 3 contains
numerical results for the nonlinear problems to demonstrate the accuracy and capability of the methods.
Concluding remarks are given in Section 4.

2. The local discontinuous Galerkin methods for the NLS equations
2.1. A local discontinuous Galerkin method for the generalized NLS equation

In this section, we present and analyze a local discontinuous Galerkin method for the following non-
linear problem:

ity + e + i(g(Jul*)u), + £ (|uf)u =0, (2.1)
with an initial condition
u(x,0) = uy(x) (2.2)

and periodic boundary conditions. Here f{u) and g(u) are arbitrary (smooth) nonlinear real functions. No-
tice that the assumption of periodic boundary conditions is for simplicity only and is not essential: the
method as well as the analysis can be easily adapted for non-periodic boundary conditions.

We denote the mesh by [;= [xj,%,xﬂ%] for j=1,...,N. The center of the «cell is

xj = (x; 1 +x;,1)/2 and Ax; =x;,, —x; 1. We denote by uj:l and

. J73 - - JT3 3 Jt3

cell, /;+ 1, and from the left cell, J;, respectively. We define the complex piecewise-polynomial space V. as
the space of polynomials of degree at most k in each cell /;, i.e.

Vae={v:vePXI) forxel, j=1,....,N}.

the value of u at x,,;, from the right

iyl
Jt3°

1
2

To define the local discontinuous Galerkin method, we rewrite Eq. (2.1) as a first-order system:
it + p, +i(g(jul*)u), + f (|u*)u = 0,

p—u,=0. (2.3)
Now we can apply the local discontinuous Galerkin method to Egs. (2.3), find u,p € Va,, Yo,w € Vay,
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{/Wm—/Qmm+@mM—@w%r4/gwwwm
I i’ o ’

1

(@)~ i(@000)y + [ Sl vds =0, 24)
1/

[ e [ () — o),

J I/

I ) =0.

The “hat” terms in (2.4) in the cell boundary terms for integration by parts are the so-called ‘“‘numerical
fluxes”, which are single valued functions defined on the edges and should be designed based on different
guiding principles for different PDEs to ensure stability. For example, upwinding should be used as a guide-
line for odd derivatives which correspond to waves, and eventual symmetric treatment, such as an alternat-
ing choice of the fluxes for a quantity and its derivative, should be used for even derivatives. It turns out
that we can take the simple choices such that

w, p=p*, gu=g(u ),

i= 0+ (1 )" +u)/2, {

iy
I

- ifg>0, 2.5
“one 0<0<1, 23)
ut if g <0,

where we have omitted the half-integer indices j +% as all quantities in (2.5) are computed at the same
points (i.e. the interfaces between the cells). g(a, ) is monotone flux, i.e. Lipschitz continuous in both argu-
ments, consistent (i.e. g(a,a) = g(a)), non-decreasing in the first argument and non-increasing in the sec-
ond. Examples of monotone fluxes which are suitable for discontinuous Galerkin methods can be found
in, e.g. [11]. We could for example use the simple Lax—Friedrichs flux

—_—

g(a,b) =5 (g(a) +g(b) —a(b —a)), o=max|¢(a)],

where the maximum is taken over a relevant range of |u|*. The algorithm is now well defined. This flux is
used in the numerical experiments in next section and we choose 6 = 0.

We remark that the choice for the fluxes (2.5) is not unique. In fact the crucial part is taking @ and p
from opposite sides.

With such a choice of fluxes we can get the theoretical results of L stability.

Proposition 2.1. (cell entropy inequality). There exist numerical entropy fluxes <i>j il such that the solution to
the scheme (2.4) and (2.5) satisfies

J

d .
&/,_ ul’ dx + &,y — &, 1 0.

Proof. First, we take the complex conjugate for every term in Eq. (2.4)

1
2

—i/ut*v*dx—/ p*v;dx-l-(];*v*i)ﬂ%—(ﬁvﬁ)jf
I I;

J

+i / g(lul)uv;dx—i(gu v ), +ilguwv™),

1/
+/f(|u|2)u*v*dx:07 (2.6)
1y
/ p*w*dx+/u*w;dx—((z?fw*f)/#—(u*w*+)jf
1; 1; ;

J J



76 Y. Xu, C.-W. Shu | Journal of Computational Physics 205 (2005) 72-97

where u* denote the the complex conjugate. Since (2.4) and (2.6) hold for any test functions in V,,, we can
choose

v=u", w=p".

With these choices of test functions and taking the difference of the sum of the two equalities in (2.4) and
the sum of the two equalities in (2.6), we can get

[ [ ) et (G o+ @p ) o+ 7))+ [ G- (G P
1 1 1 B
—(p” 4 P, ) / g(uP)(Jul), dx + (@i + gru),,, — i(gau + guer),
J
=0.
Take G(t) = ["g(t)dz, with definition (2.5) of the numerical fluxes and after some algebraic manipulation, we

have
:O,

) ar @y~ 446,
where ﬁle numerical entropy flux is given by
& =2Imu p*) - G(lu ) + guu" + guu
and the extra term O is given by
0 = [G(|u")] — (gu[u] + gu’[u))
ut|?
- / | (g(v) = &(lu[*, [u[)dz + 02 (ju |*, [u* ) ((u" = u”) '] + ()" = () ")) > 0,

,‘2

where [u] =u" — u~ denotes the jump of u, and we have used the monotonicity of g as well as the definition
of the upwind value u"” to reach the last inequality. Now we have

/wmyn+@%f@%<o
1; -

This is the cell entropy inequality.

Summing up the cell entropy inequalities, we obtain

Corollary 2.2. (L? stability). The solution to the scheme (2.4) and (2.5) satisfies the L* stability

L
%/0 uf?dx < 0.

For actual numerical implementation, it might be more efficient if we decompose the complex function
u(x, ) into its real and imaginary parts by writing

u(x,t) = r(x,t) +is(x, 1), (2.7)
where r and s are real functions. Under the new notation, the problem (2.1) can be written as

ot st (07 +50)r), + f(P +57)s =0,

5. — T+ (g7 +5%)s), — f(F +s)r =0, (2.8)

which can also be written as an equivalent first-order system:
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ro+p+ (@07 + 7)), + f (P +57)s =0,

P~ S = 07
si— g+ (807 +57)s), — f(P +57)r =0,
q—r,=0.

The local discontinuous Galerkin method (2.4) then becomes: find r,p,s,q € V., which now denotes real
piecewise polynomial of degree at most &, such that Yo, w,z,h € Va,,

/ rodx — /pvxdx+ (ﬁv*)ﬂ% - (f)u*)jf% - / g(s* + r*)ro.dx + (gArv*)ﬂ% - (gArv*)j;%
I; I; I;

J

+ /f(r2 + sH)svdx = 0,
1

/ pwdx + / swydx — (Sw’)j% + (§w+)j7% =0,

U l (2.9)

- N 2, 2 ~ - =

/I,Slde + /1/ gz, dx — (gz )./'+% + (qz+)_,«_% - /I/g(s +77)sz, dx + (gsz )‘,'+% - (gSZJr)‘,-_%

- /f(i”2 + sH)rzdx = 0,

1j
/I/qhdx + /1] rh,dx — (ffh*)j% + (ﬂﬁ)j,% =0.
The numerical fluxes become

f?:p+7 ?:ria qg=4q9, §:Sa
=2 +r) (+))E =g+ (5 + 7)),
_ . B . - if g =0,
F=0r"+(1-0)" +7r7)/2 r”—{r+ if g <0, (2.10)
~ u, — u, -if g = O’
s=ow (-0 = {7 187 Moo,

where we have omitted the half-integer indices j + 1 as all quantities in (2.10) are computed at the same
points (i.e. the interfaces between the cells).
Next, we consider the error estimate for linearized NLS equation

0 U, + i+ uf =0, (2.11)

where we use ¢ to denote the exact solution of Eq. (2.11). The corresponding equations in real functions

are
e e e e __
re+si v +s°=0,
e e e e
s —ro +5.—r=0,

(2.12)

with the equivalent first-order system:

v+ pl+ri+s° =0,
pe_si:0>
s, —q.+ s, —r°=0,

q°—r:=0.
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We define

Bj(r,p,s,q;v,w,z,h)z/r,vdx+/s,zdx+/svdx+/pwdxf/rzder/qhdxf/pvxdx
1 1 1 1 1 1 1

+(Pv7) —@v*)j — / oy (Fo7) = (F07) / gzdy— (327),

1
2
1; 1

l—

+ (CA]Z+)J._% - /] szedx + (S27),44 — (§z+)j_% + /1 swydx — (Sw) 1+ (Bwh),

J J

+ / rhody — (7h) 0y + (7h), ),

5 3
where the monotone fluxes simply become upwinding
r=r, s5=s5.
The local discontinuous Galerkin method for Eq. (2.12) becomes: find r,p,s,q € Vo, such that,
Yo, w,z,h € Vay,
Bi(r,p,s,q;0,w,z,h) = 0.
We clearly also have
B(r*,p°,5%,q% 0,w,z,h) =0,
and we can then obtain the error equation
Bi(r —r,p°—p,s*—s,4°—q;v,w,z,h) =0 (2.13)
for all v,w,z,h € V. Take
v=9r—r, w=2¢ —q, z=9s—s, h=p—Pp°
where 2 is the standard L? projection into Va,, that is, for each j,
/(Ww(x) —wx))v(x)dx =0 Vve P
1
and & is special projection into V4, which satisfies, for each j,
/[ (Fw() = w(x)pl)dr =0 Vo e P! and Fwl;y) = wix,.y).
J
Then we have
B;(v,—h,z,w;v,w,z, h) = B;(v°, —h®,z°,w’;v,w, z, h), (2.14)
where
=91 —r, wW=2¢—q°, £=955—5° h=p°—Pp.
By the same argument as that used for the cell entropy inequality, the left-hand side of (2.14) becomes

Bi(v,—h,z,w;v,w,z, h) = /(v,v+z,z)dx+ @% - 1+ @j,%,

J J=3
1j
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As to the right-hand side of (2.14), we have
Bi(v*, —h", 2, who,w,z,h) =1+ 1T+ 1T + 1V,
where

I= /(vfu +z/z)dx,
1

J

1= /((we — 29z + (h° = 0v°) v, + 2wy + 0°h, — hw + woh + 2°v — v°z)dx,
I

J

1= (((h°)" = () )] + ()" = () )+ () [w] + (o) [A]),
and

W=H,—-H._

with
H=—((h)" = () ) = (W) = () )z = () w = ()
By using the simple inequality ab < (¢/2)a” + (1/2¢)b?, and standard approximation theory [6] on

= (L1 —r°), and zf = (Sz° —z°),, we have

1
1 < CAH + /(v2 + 2%)dx.
1
Because 2 is a local L? projection, and %, even though not a local L? projection, does have the property
that w — Y is locally orthogonal to all polynomials of degree up to k — 1, all the terms in /7 except the last
two terms are actually zero. We can get the estimates for the last two terms in /I
1
/(zev —1°z)dx < CA)C/Z."+3 +t7 /(v2 + 2%)dx.
1j . 1j
The last two terms in /1] are zero, because of the special interpolating property of the projection .. An appli-
cation of the simple inequality ab < %(a2 + b?) for the first two terms in I77 and the standard approximation
theory on the point values of v* = Fr¢ —1°, w* = Pq° — ¢°, z° = Ss° — s°, h° = p* — Pp° then gives
. 1. 2

I < C(AXT? + A ) +7 (" + ).

Finally, 7V only contains flux difference terms which will vanish upon a summation in j.
Combining all these and summing over j we obtain the following inequality:

d 1., 1. " £
—_ _ dx + = < Ax +1 (2 2 dx.
dtl z(v z ) 4([”] [Z] ) ~ \/0' 2(0 z )

An integration in ¢ plus the standard approximation theory on 1* = (¥7r° — r°) and z¢ = (¥s° — s°) then
gives the desired error estimates.

Proposition 2.3. (error estimate). The error for the scheme (2.9) and (2.10) applied to the linearized NLS
equation (2.12) satisfies

e e K- l
4 = ully < Cllu [ AX, (2.15)

where ||, is the standard Sobolev m norm and the constant C depends on the time t.
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2.2. The local discontinuous Galerkin method for two-dimensional NLS equations

In this section, we present and analyze the local discontinuous Galerkin method for the two-dimensional
NLS equations

i, + Au+ f(Ju)u=0, 0<x,y<L, (2.16)

with an initial condition
u(xayvo) :Mo(X,y) (217)

and periodic boundary conditions. Here, f(u) is an arbitrary (smooth) nonlinear real function. Notice that
the assumption of a box geometry and periodic boundary conditions is for simplicity only and is not essen-
tial: the method can be easily designed for arbitrary domain and non-periodic boundary conditions.

We assume that the domain @ is polygonal and denote by 7 4, a triangulation of Q. Here Ax measures
the longest edge of all polyhedra in .7 ,,. We again denote the complex finite element space by

Vae={v:ve PYK) for VK € T 5 }.

To define the local discontinuous Galerkin method, we rewrite Eq. (2.16) as a first-order system:

iul +px + qy +f‘(|u|2)u = 07
p—ux:()7 (218)
q—u,=0.

Now we can define the local discontinuous Galerkin method to Egs. (2.18): find u,p,q € Va,, such that,
Yo,w,z € Vay,

i/u,vdxdy—/pvxdxdy+/ p,,?v""”(ds—/qudxdy—}—/ qnjv"’”"'ds+/f(|u|2)uvdxdy:0,
K 0K K
/pwdxdy+/uw dxdy — / i, W' ds =0, (2.19)

/ qzdxder/uzydxdy—/ @Zintkdszm
K K oK

where 0K is the boundary of element K, and the numerical fluxes (the ““hats’’) are defined similar to the one-
dimensional cases, namely

— - — _ _+ — - — _ _+
Up = U Nyk, anK =P nxg, Up,p = U Nyk, qny_K =4 Nyk, (220)

where (n, x,n, x) are the outward unit normal for element K along the element boundary 0K, u}’ de-
notes the value of u evaluated from inside the element K, and v, 0" refer to values of v at a uniquely
defined “left” and “right” sides for each edge. For example, if all the elements K are rectangles, then
on all horizontal edges, v~ denotes the value of v from below, and v denotes the value of v from
above; and on all vertical edges, v~ denotes the value of v from left, and v denotes the value of v
from right The choice for the fluxes (2.20) is not unique. In fact the crucial part is taking
i, and p, e i, . and g, from opposite sides.

With such a choice of fluxes we still have > stability for the scheme (2.19) and (2.20). The proof follows
the same lines as the one-dimensional case, so we omit it.
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Proposition 2.4. (L? stability). The solution to the scheme (2.19) and (2.20) satisfies the L* stability

d 2
— < 0.
dt/glu| dxdy <0

2.3. The local discontinuous Galerkin method for coupled NLS equations

In this section, we present and analyze the local discontinuous Galerkin method for the coupled NLS
equations

lut+1ocux+uxx+ﬁu+’<v+f(|u|2’|D‘2)u:07 (2 21)
iv, —iowx+vxx—ﬁu+xv—|—g(\u|2,\v|2)v:0, '
with an initial condition
70 = )
{“(x ) = () (2.22)
U()C, 0) = U()(x),

and periodic boundary conditions. Here, f(a,b) and g(a,b) are arbitrary (smooth) nonlinear real functions,
o, f, k are constants. Notice again that the assumption of periodic boundary conditions is for simplicity only
and is not essential: the method can be easily designed for non-periodic boundary conditions.

To define the local discontinuous Galerkin method, we rewrite Eq. (2.21) as a first-order system:

i, + o, + p, + Pu+ kv +f(|u|2, \v|2)u =0,

_ux:Ou
P o (2.23)
v, —low, + q, — Pu+ xv+ g(Jul”, [v]")v = 0,

q—v,=0.

Now we can define the local discontinuous Galerkin method to Egs. (2.23): find u,v,p,g € Va,, such that,
VV, w,s,Zz, S VA.’C;

i/ urdx — ioc/ urxderioc(itr’)H% - iot(i;ﬁ)j_% _ /prxder (er*)H% — (),
I; . : I; . y

2
J I/

+ /(ﬁu o+ £ (ju, [P )uyrdx = 0,

1

/ pwdx + / uw, dx — ((i‘wi)ﬂl - (ﬁw+)./'—
5 1, (2.24)
i/ vsdx + ioc/ vsedx —do(Ds™) .y + dor(0s7), 4 — / g5, A+ (457);44 = (@574

I . 8 : 1 ’ i

J [l

+ /(—Bu + kv + g(|u|27 |v|2)v)sdx =0

J

/ gzdx +
Iv

The “hat” terms in (2.24) are again the numerical fluxes, which can be taken as

vzedy — ((i27);,y — (627),,) = 0.

u=u, [A’:p+v v=v, ‘?fo,
u=u, v=v" ifa>0, (2.25)
u=u", v=v ifa<0,
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where we have omitted the half-integer indices j + 1 as all quantities in (2.25) are computed at the same
points (i.e. the interfaces between the cells).
We remark that the choice for the fluxes (2.25) is not unique. In fact the crucial part is taking

2 and p, v and ¢ from opposite sides.

Table 1

Accuracy test for the NLS equation (3.1) with the plane wave solution (3.2)

N Real part Imaginary part
L? error Order L™ error Order L? error Order L™ error Order
»° 20 6.92E — 02 - 1.82E — 01 - 6.98E — 02 - 1.83E — 01 -
40 3.64E — 02 0.93 1.68E — 01 0.12 3.45E — 02 1.02 8.98E — 02 1.02
80 1.73E — 02 1.08 7.34E — 02 1.19 1.70E — 02 1.02 4.34E — 02 1.05
160 8.52E — 03 1.02 3.71E — 02 0.98 8.49E — 03 1.00 2.38E — 02 0.86
P 20 6.26E — 03 — 2.36E — 02 - 6.18E — 03 - 2.43E — 02 -
40 1.59E — 03 1.98 6.21E — 03 1.93 1.66E — 03 1.90 1.14E — 02 1.09
80 3.90E — 04 2.03 1.49E — 03 2.05 4.03E — 04 2.04 247E — 03 2.21
160 9.87E — 05 1.98 3.73E — 04 2.00 9.92E — 05 2.02 5.95E — 04 2.05
Vs 20 1.24E — 04 - 6.56E — 04 - 1.32E — 04 - 6.27E — 04 -
40 2.07E — 05 2.62 245E — 04 1.42 1.78E — 05 2.89 7.98E — 05 2.97
80 2.17E — 06 3.26 2.62E — 05 3.22 1.94E — 06 3.20 1.01E — 05 2.99
160 2.52E — 07 3.10 3.09E — 06 3.08 2.45E — 07 2.99 1.33E — 06 2.92
P’ 20 6.55E — 06 - 241E — 05 - 6.29E — 06 - 2.01E — 05 -
40 4.61E — 07 3.83 1.59E — 06 3.93 5.37E — 07 3.55 4.04E — 06 2.31
80 241E — 08 4.26 1.02E — 07 3.96 2.66E — 08 4.34 2.26E — 07 4.16
160 1.50E — 09 4.01 5.52E — 09 4.20 1.53E — 09 4.12 1.37E — 08 4.05
0=0.5, f=7y=0, A =c=1. Periodic boundary condition in [0,27]. Non-uniform meshes with N cells at time # = 1.
Table 2
Accuracy test for the NLS equation (3.1) with the plane wave solution (3.2)
N Real part Imaginary part
L? error Order L> error Order L? error Order L™ error Order
»° 20 6.98E — 02 - 1.89E — 01 - 6.94E — 01 - 1.73E — 01 -
40 3.62E — 02 0.95 9.32E — 02 1.02 3.68E — 02 091 1.38E — 01 0.33
80 1.73E — 02 1.07 4.75E — 02 0.97 1.73E — 02 1.09 6.83E — 02 1.01
160 8.58E — 03 1.01 2.21E - 02 1.10 8.59E — 03 1.01 3.20E — 02 1.09
P! 20 1.61E — 02 - 3.28E — 02 - 1.62E — 02 - 3.12E - 02 -
40 3.70E — 03 2.12 8.69E — 03 1.92 4.88E — 03 1.73 1.11E — 02 1.49
80 9.58E — 04 1.95 1.93E — 03 2.17 1.03E — 03 2.25 221E-03 2.33
160 2.48E — 04 1.95 5.01E — 04 1.94 2.49E — 04 2.04 5.60E — 04 1.98
Y 20 1.48E — 04 - 7.90E — 04 - 1.41E — 04 - 7.12E — 04 -
40 1.88E — 05 2.98 1.04E — 04 2.93 2.25E — 05 2.64 2.49E — 04 1.52
80 2.12E — 06 3.15 1.17E — 05 3.15 2.24E — 06 3.33 2.27E — 05 3.46
160 2.42E — 07 3.21 1.32E — 06 3.14 2.46E — 07 3.19 1.40E — 06 4.02
P’ 20 1.96E — 05 - 3.70E — 05 - 1.93E — 05 - 3.80E — 05 -
40 1.30E — 06 3.92 4.24E — 06 3.12 1.64E — 06 3.55 3.77E — 06 3.33
80 7.71E — 08 4.08 1.60E — 07 4.73 8.61E — 08 4.25 1.79E — 07 4.40
160 4.61E — 09 4.06 8.03E — 09 431 4.74E — 09 4.18 8.45E — 09 441

0=0.5, f=y=1, A=c=1. Periodic boundary condition in [0,27]. Non-uniform meshes with N cells at time # = 1.
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Table 3
Accuracy test for NLS equation (3.3) with the soliton solution (3.4)
N Real part Imaginary part
L? error Order L™ error Order L? error Order L error Order
»° 80 9.22E — 02 - 7.42E — 01 - 1.00E — 01 - 7.25E — 01 -
160 3.23E - 02 1.51 3.04E — 01 1.29 3.30E — 02 1.60 2.78E — 01 1.38
320 1.24E — 02 1.39 1.19E — 01 1.35 1.24E — 02 1.41 1.08E — 01 1.37
640 5.64E — 03 1.13 5.43E — 02 1.13 5.74E — 03 1.12 S.11E — 02 1.07
P! 40 1.38E — 01 - 8.69E — 01 - 1.22E — 01 - 5.96E — 01 -
80 2.38E — 02 2.53 1.78E — 01 2.28 2.12E — 02 2.53 1.54E — 01 1.96
160 5.28E — 03 2.17 5.06E — 02 1.82 4.97E — 03 2.09 4.21E — 02 1.87
320 1.25E — 03 2.08 1.31E — 02 1.95 1.16E — 03 2.10 1.07E — 02 1.98
Vs 40 1.31E — 02 - 1.07E — 01 - 1.31E — 02 - 1.25E - 01 -
80 9.29E — 04 3.82 1.40E — 02 2.94 1.00E — 03 3.71 1.19E — 02 3.39
160 1.04E — 04 3.15 1.84E — 03 2.93 1.01E — 04 3.30 1.84E — 03 2.70
320 1.18E — 05 3.15 2.55E — 04 2.85 1.21E — 05 3.07 2.33E — 04 2.98
Vi 20 4.93E — 02 - 3.86E — 01 - 5.20E — 02 - 3.41E - 01 -
40 2.62E — 03 4.24 1.75E — 02 4.46 2.36E — 03 4.46 1.80E — 02 4.25
80 1.92E — 04 3.77 2.03E — 03 3.11 1.78E — 04 3.73 1.47E — 03 3.61
160 1.50E — 05 3.67 1.32E — 04 3.94 1.40E — 05 3.66 1.06E — 04 3.80

Periodic boundary condition in [—15,15]. Non-uniform meshes with N cells at time # = 1.

With such a choice of fluxes we can get the theoretical results of L? stability.
Proposition 2.5. (L? stability). The solution to the scheme (2.24) and (2.25) satisfies the L* stability
d L
a/O (uf? + |o2)dx < 0.

Proposition 2.5 can be proven by similar techniques as that in the proof of Proposition 2.1. We will thus not
give the details here.

3. Numerical results

In this section we provide numerical examples to illustrate the accuracy and capability of the methods
developed in the previous section. Time discretization is by the third order explicit Runge-Kutta method
in [26]. We can also use the exponential time differencing fourth-order Runge—Kutta method which was
developed by Cox and Matthews in [16]. We will use this efficient time discretization method in a future
work.

Example 3.1. We show an accuracy test for the NLS equation

iu,+uxx—|—i<x(|u|2u)x—|—ﬁ\u|2u—|—y|u|4u =0, (3.1)
which admits a progressive plane wave solution

u(x,t) = Aexp(i(ex — wt)), (3.2)

where w = ¢ + a|d*c — p|lA]* — y|4|*, 4 and ¢ are constants. We use non-uniform meshes in this and later
examples which are obtained by randomly perturbing each mesh point in a uniform mesh independently up
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to £10%Ax. The L? and L™ errors and the numerical orders of accuracy are contained in Tables 1 and 2.
We can see that the method with P* elements gives a uniform (k + 1)-th order of accuracy in both norms.

Example 3.2. We show an accuracy test for the NLS equation
i, 4t + 2Jul’u =0, (3.3)

with the soliton solution

u(x,t) = sech(x — 4¢) exp <2i (cx - %t) ) . (3.4)

Waves of this form play an important role in complex physical situations, for example, in coherent laser
optics. It can be shown that the envelope or the modulus |u(x, 7)] may be considered as a soliton. The L?

t:o t:2

lul
Jul

| - P - 1 Owwlw 1
0 10 20 20 10

. L1 Ll
20

X o
-
o

I 1 P - | P - 1
-20 -10 0 10 20

X X

Fig. 1. The soliton propagation of Eq. (3.3) with initial condition (3.5). Periodic boundary condition in [—25,25], xo = —10, P?
elements with 200 uniform cells.
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and L errors and the numerical order of accuracy are contained in Table 3. We can see that the method
with P* elements gives a uniform (k + 1)-th order of accuracy in both norms.

Example 3.3. In this example we show the soliton propagation of Eq. (3.3) in Fig. 1 with the initial
condition

u(x,0) = sech(x — x¢) exp(2i(c(x — xp)))- (3.5)
The double soliton collision case has the initial condition
2 1
u(x,0) = Z exp (5 ic;(x — xj)> sech(x —x;) (3.6)
=1

The solution is computed with periodic boundary condition in [—25,25] using P? elements with 250 uniform
cells and is shown in Fig. 2.

t=0 t=2.5

lul

TR [N T TN SN T AN S NN SN T [N T ST TN SN SN SN SN SN S N S I 1

-20 -10 0 10 20 0 10 20

///'I e

o v 1
-20 -10 0 10 20

X

Fig. 2. The double soliton collision of Eq. (3.3) with initial condition (3.6). ¢; =4, x; = —10, ¢; = —4, x, = 10. Periodic boundary
condition in [—25,25]. P? elements with 250 uniform cells.
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Example 3.4. In this example we show the birth of soliton using a square well initial condition [17]. We

take the Maxwellian initial condition
(3.7)

u(x,0) = Aexp(—x?).

In Fig. 3 the standing soliton is observed.
A second simulation involves the initial condition
(3.8)

u(x,0) = A exp(—x> + 2ix).

In Fig. 4 the mobile soliton is observed.

Example 3.5. In this example we show the bound state solution of the equation
(3.9)

i, + e + ﬁ|u|2u =0,

with the initial condition

= t=2
2 to 2
15
S oF S OIF
05
0 — 1 1 0 b—r— .,,1\/\.
-25 0 25 -40 20 0 20 40
X X
t=4
2
E

Fig. 3. The birth of standing soliton of Eq. (3.3) with initial condition (3.7). 4 = 1.78. Periodic boundary condition in [—45,45]. P*

elements with 400 uniform cells.
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u(x,0) = sechux. (3.10)
It will produce a bound state of N solitons if
B =2N>. (3.11)

The theoretical solution for a bound state of solitons is known [23]. The solutions develop small narrow
structure which are difficult to resolve if N > 3. In Figs. 5-7, we show the numerical approximation of
the bound state of soliton for N = 3,4,5.

Example 3.6. We show an accuracy test for the coupled NLS equation
it -+ oty + S + ([ + BlofJu = 0,
. . | 2 2 (3.12)
v, — iowy + 5 0 + (Blul” + |v]7)v = 0,

with the soliton solution

=0 t=2
2
15 I
| 151
1 -
= 0 S
05
0 T 1 T
10 0 10
X
t=4
2
15
S O1F
05

X

Fig. 4. The birth of mobile soliton of Eq. (3.3) with initial condition (3.8). 4 = 1.78. Periodic boundary condition in [—45,45]. P?
elements with 400 uniform cells.
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2 2

ulx, 1) = %f sech(v2a(x — ct)) exp (i((c 2)x — (" ;“ a)t)),

=

(3.13)

o(x, 1) 12:’ sech(V2a(x — ct)) exp (i((c Fax— (‘32 3 L a> z))

=

The L? and L™ errors and the numerical order of accuracy are contained in Table 4. We can see that the
method with P* elements gives a uniform (k + 1)-th order of accuracy in both norms.

We also present the solitary wave propagation for the coupled NLS equation (3.12) in Fig. 8 with the
initial condition

u(x,0) = ] iflﬂsech(\/z(x —xp)) exp(i((c — a)(x — x0))),
(3.14)
v(x,0) = 1 %ﬁlﬁsech(\/z(x —xp)) exp(i((c + a)(x — xp))).

t:o t=0.2

E
1F
0 T J\IK
-10 0 10
X
t=0.4 t=0_6
150 i
2
1k
ER E
I 1k
05 U

-10 0 10 -10 0 10

Fig. 5. The bound state solution of Eq. (3.9) with initial condition (3.10). N = 3. Periodic boundary condition in [—15,15]. P* elements
with 500 uniform cells.
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t=0 t=0.2

lul
T
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t=0.4 t=0.6

[ul
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Fig. 6. The bound state solution of Eq. (3.9) with initial condition (3.10). N = 4. Periodic boundary condition in [—15,15]. P? elements
with 800 uniform cells.

Example 3.7. In this example we show the soliton interaction for the coupled NLS equation (3.12). The
double soliton collision case has the initial condition

=y 1 n —Losech(y/24;(x — x7)) exp(i((¢; — o) (x — x))),
le (3.15)
Z ’_sech \/2_aj(x —x;)) exp(i((¢; + o) (x —x;))),

J=1

m

i

where o = 0.5, f =2/3,¢; =1, ¢, = 0.1, a1 1, a, =0.5, x; =0, x, = 25. The solution is computed with peri-
odic boundary condition in [—20, 80]. P elements with 400 cells are used and the result is shown in Fig. 9.
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t=0 t=0.2

Jul

05

Jul
Jul

05

0.5

-10 0 10 -10 0 10
X X

Fig. 7. The bound state solution of Eq. (3.9) with initial condition (3.10). N = 5. Periodic boundary condition in [—15, 15]. P? elements
with 1000 uniform cells.

The triple soliton collision case has the initial condition

u(0,0) = 3 [ sech(/ax — ) expli((e; — )(x — ),
= (3.16)

0(w,0) = 3 [T sech(y/2ax = ) expi(e; + 0)x = )

where « = 0.5, f=2/3, ¢c1=1,¢,=0.1, 3=—1, a1 =1, a,=0.72, a3 =0.36, x; =0, x, =25, x3 =50. The
solution is computed with periodic boundary condition in [—20,80]. P? elements with 400 cells are used
and the result is shown in Fig. 10.

Example 3.8. We show an accuracy test for the two-dimensional NLS equation

iu,+uxx+uyy+/3\u|2u =0, (3.17)
which admits a progressive plane wave solution

u(x, 1) = Aexp(i(c1x + ey — ot)), (3.18)
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Table 4
Accuracy test for the coupled NLS equation (3.12) with the soliton solution (3.13)
N Real part of u Imaginary part of u
L? error Order L™ error Order L? error Order L error Order
»° 80 1.76E — 01 - 2.99E — 01 - 2.37E — 01 - 4.49E — 01 -
160 1.16E — 01 0.60 2.13E — 01 0.49 1.34E — 01 0.82 2.48E — 01 0.86
320 7.05E — 02 0.72 1.31E — 01 0.70 7.69E — 02 0.80 1.40E — 01 0.82
640 3.99E — 02 0.82 7.43E — 02 0.82 4.14E — 02 0.89 7.56E — 02 0.89
P! 80 6.72E — 02 - 1.18E — 01 - 7.36E — 02 - 2.66E — 01 -
160 1.82E — 02 1.89 3.33E — 02 1.83 1.54E — 02 2.26 6.49E — 02 2.03
320 4.47E — 03 2.03 8.11E — 03 2.04 3.69E — 03 2.06 1.54E — 02 2.07
640 1.21E — 03 1.88 2.18E — 03 1.89 9.83E — 04 1.91 4.04E — 03 1.93
Vs 80 6.91E — 03 - 1.91E — 02 - 6.38E — 03 - 2.17E — 02 -
160 5.48E — 04 3.66 2.18E — 03 3.13 6.18E — 04 3.37 2.50E — 03 3.12
320 5.19E — 05 3.40 3.05E — 04 2.84 6.76E — 05 3.19 3.52E — 04 2.82
640 5.34E — 06 3.28 3.19E — 05 3.26 8.04E — 06 3.07 5.21E — 05 2.76
Vi 80 2.03E — 03 - 3.51E — 03 - 1.44E — 03 - 421E - 03 -
160 1.23E — 04 4.04 2.49E — 04 3.82 1.02E — 04 3.82 5.01E — 04 3.07
320 9.51E — 06 3.69 1.78E — 05 3.81 7.08E — 06 3.85 3.16E — 05 3.99
640 591E — 07 4.01 1.30E — 06 3.77 4.34E — 07 4.03 1.99E — 06 3.99
»° 80 3.60E — 01 - 7.52E — 01 - 2.58E — 01 - 4.57E — 01 -
160 2.27E — 01 0.67 4.85E — 01 0.63 1.71E — 01 0.59 3.11E - 01 0.55
320 1.33E — 01 0.78 2.87E — 01 0.76 9.76E — 02 0.81 2.07E — 01 0.59
640 7.34E — 02 0.85 1.63E — 01 0.81 5.24E — 02 0.90 1.20E — 01 0.79
P! 80 1.11E — 01 - 3.00E — 01 - 8.40E — 02 - 2.16E — 01 -
160 291E — 02 1.98 1.01E — 01 1.57 2.11E — 02 2.00 7.50E — 02 1.53
320 6.99E — 03 2.01 2.66E — 02 1.93 5.12E - 03 2.04 1.77E — 02 2.08
640 1.86E — 03 1.91 6.27E — 03 2.08 1.37E — 03 1.90 5.55E — 03 1.68
P? 80 1.15E — 02 - 3.36E — 02 - 1.26E — 02 - 5.04E — 02 -
160 1.33E - 03 3.11 7.15E — 03 2.23 1.22E — 03 3.36 5.65E — 03 3.16
320 1.47E — 04 3.18 8.02E — 04 3.16 1.53E — 04 3.00 8.76E — 04 2.69
640 1.79E — 05 3.03 1.26E — 04 2.67 1.76E — 05 3.12 9.60 3.19
Vi 80 3.01E — 03 - 5.07E — 03 - 2.37E — 03 - 7.24E — 03 -
160 2.18E — 04 3.79 9.75E — 04 2.38 1.83E — 04 3.70 4.67E — 04 3.95
320 1.49E — 05 3.86 6.05E — 05 4.01 1.20E — 05 3.93 4.49E — 05 3.38
640 9.17E — 07 4.03 3.28E — 06 4.20 7.42E — 07 4.01 3.21E — 06 3.80

c=1,0=0.5 a=1, =2/3. Periodic boundary condition in [—25,25]. Non-uniform meshes with N cells at time 7 = 1.

where o = ¢} + ¢ — ﬂ|A|2, A, ¢; and ¢, are constants. We use uniform and non-uniform rectangular
meshes, the non-uniform meshes have independent random perturbations in each of the x and y directions.
The L? and L™ errors and the numerical order of accuracy are contained in Table 5. We can see that the

method with P* elements gives a uniform (k + 1)-th order of accuracy in both norms.

Example 3.9. In this example we show singular solutions for the two-dimensional NLS equation

T, 4ty + 1y + |u|2u =0.

We choose the initial condition

u(x,y) = (1 +sinx)(2 +siny)

(3.19)

(3.20)
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Fig. 8. The solitary wave propagation of Eq. (3.12) with initial condition (3.14). o =0.5, = 2/3,
boundary condition in [—20,80]. P* elements with 400 uniform cells.

c=1, a=1, xo=0. Periodic
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Fig. 9. The double soliton collision of Eq. (3.12) with initial condition (3.15). « = 0.5, f=2/3,¢;=1,¢,=0.1,a,=1,a,=0.5, x; = 0,
X, = 25. Periodic boundary condition in [—20,80]. P? elements with 400 uniform cells.
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Fig. 10. The triple soliton collision of Eq. (3.12) with initial condition (3.16). «=0.5, f=2/3, ¢; =1, ¢ =0.1, ¢c3=—1, a; =1,
a, =0.72, a3 = 0.36, x; = 0, x5 = 25, x3 = 50. Periodic boundary condition in [—20,80]. P? elements with 400 uniform cells.
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Table 5
Accuracy test for the NLS equation (3.17) with the plane solution (3.18)
NxN Real part Imaginary part
L? error Order L error Order L? error Order L error Order
»° 10x 10 2.30E — 01 - 1.08 - 2.16E — 01 - 7.57E — 01 -
20 x 20 1.05E — 01 1.13 4.72E — 01 1.20 1.05E — 01 1.03 4.72E — 01 0.68
40 x40 491E — 02 1.10 2.30E — 01 1.04 4.92E — 02 1.10 2.30E — 01 1.04
80 x 80 2.42E — 02 1.02 1.22E — 01 0.92 242E — 02 1.02 1.21E — 01 0.92
P! 10x 10 1.24E — 01 - 3.43E — 01 - 2.81E — 02 - 9.88E — 02 -
20 x 20 2.82E — 02 2.13 9.87E — 02 1.60 2.82E — 02 2.13 9.43E — 02 1.87
40 x 40 6.70E — 03 2.07 2.50E — 02 1.98 6.71E — 03 2.07 2.45E — 02 1.95
80 x 80 1.64E — 03 2.03 5.93E - 03 2.08 1.64E — 03 2.03 6.04E — 03 2.02
Vs 10x 10 7.12E — 03 - 5.69E — 02 - 6.95E — 03 - 5.76E — 02 -
20 x 20 6.83E — 04 3.38 6.89E — 03 3.04 7.15E — 04 3.28 7.01E — 03 3.04
40 x40 7.96E — 05 3.10 8.75E — 04 2.98 7.99E — 05 3.16 9.52E — 04 2.88
80 x 80 9.11E — 06 3.13 1.02E — 04 3.11 9.10E — 06 3.13 1.04E — 04 3.19
Vi 10x 10 1.48E — 03 - 8.40E — 03 - 1.45E — 03 - 7.19E — 03 -
20 x 20 9.16E — 05 4.02 6.01E — 04 3.81 9.23E — 05 3.97 5.41E — 04 3.73
40 x 40 5.66E — 06 4.02 4.72E — 05 3.67 5.64E — 06 4.03 3.18E — 05 4.09
80 x 80 3.53E - 07 4.00 2.14E — 06 4.47 3.52E - 07 4.00 2.33E — 06 3.77
B =2, A=c=1. Periodic boundary condition in [0,27n]. Non-uniform meshes with N x N cells at time ¢ = 1.

Fig. 11. The singular solution of Eq. (3.19) with initial condition (3.20). Periodic boundary condition in [0,2n]. P? elements with
120 x 120 uniform cells.
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and a periodic boundary condition. Strong evidence of a singularity in finite time is obtained, although
there is no rigorous proof of breakdown in this case [27]. The solution is computed with a periodic bound-
ary condition in [0,2n] using P? elements with 120 x 120 uniform cells. The result is shown in Fig. 11.

4. Concluding remarks

We have developed the local discontinuous Galerkin methods to solve generalized nonlinear Schro-
dinger equations, including coupled Schrodinger equations and two-dimensional Schrédinger equations,
and have proven the stability of these methods. Numerical examples for nonlinear problems are shown
to illustrate the accuracy and capability of the methods. Although not addressed in this paper, these
methods are flexible for general geometry, unstructured meshes and /#—p adaptivity, and have excellent
parallel efficiency. They should provide a useful class of numerical tools for solving the nonlinear
Schrédinger equations.
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